ЦИКЛЫ ПОРШНЕВЫХ ДВИГАТЕЛЕЙ
ВНУТРЕННЕГО СГОРАНИЯ
1. Краткие исторические сведения
Вся история развития двигателей внутреннего сгорания подвержена основной движущей силе - увеличение КПД ДВС.
Первым, кто указал на возможность создания двигателей внутреннего сгорания, является Сади Карно. Идеи, высказанные им в работе «Размышления о движущей силе огня», в дальнейшем были полностью реализованы.
В 1860 г. Француз Ленуар построил двигатель внутреннего сгорания (ДВС), работавший на газе. Однако он не получил широкого распространения ввиду того, что имел низкий кпд (не выше, чем кпд паровых машин).
В 1862 г. французский инженер Бо-де-Роша предложил (запатентовал) двигатель, принципы создания которого совпадали с идеями Карно. Эти принципы были осуществлены немецким инженером Отто в созданном им в 1877 г. бензиновом двигателе.
В 1897 г. немецким инженером Дизелем был разработан двигатель высокого сжатия, который работал на керосине. Распыление керосина осуществлялось воздухом высокого давления, полученного от компрессора.
В 1904 г. русский инженер Г.В.Тринклер построил бескомпрессорный двигатель со смешанным сгоранием топлива - сначала при постоянном объеме, а затем при постоянном давлении. Такой двигатель получил в настоящее время широкое распространение.
2. Классификация ДВС
Все современные двигатели внутреннего сгорания подразделяются на три основные группы:
1. Двигатели, в которых используется цикл с подводом тепла при постоянном объеме v=const (цикл Отто).
2. Двигатели, в которых используется цикл с подводом тепла при постоянном давлении p=const (цикл Дизеля).
3. Двигатели, в которых используется смешанный цикл с подводом тепла как при v=const , так и при p=const (цикл Тринклера).
При исследовании идеальных термодинамических циклов поршневых двигателей внутреннего сгорания к числу определяемых величин относятся: количество подведенной и отведенной теплоты, основные параметры состояния в характерных точках цикла, термический кпд цикла.
3. Циклы ДВС с подводом теплоты при постоянном объеме
Исследование работы реального поршневого двигателя целесообразно производить по так называемой индикаторной диаграмме (снятой с помощью специального прибора - индикатора). Индикаторная диаграмма двигателя, работающего со сгоранием топлива при постоянном объеме, представлена на рис.1.
Рис.1
При движении поршня от верхней мертвой точки к нижней происходит всасывание горючей смеси (линия 0-1). Эта линия не является термодинамическим процессом, так как основные параметры при всасывании не изменяются, а изменяются только масса и объем смеси в цилиндре. Кривой 1-2 (линия сжатия) изображается процесс сжатия (поршень движется от нижней мертвой точки к верхней). В точке 2 от электрической искры происходит мгновенное воспламенение горючей смеси (при постоянном объеме). Этот процесс изображается кривой 2-3. В ходе этого процесса температура и давление резко возрастают. Процесс расширения продуктов сгорания на индикаторной диаграмме изображается кривой 3-4, называемой линией расширения. В точке 4 происходит открытие выхлопного клапана, и давление в цилиндре уменьшается до наружного давления. При дальнейшем движении поршня (от нижней мертвой точки к верхней) через выхлопной клапан происходит удаление продуктов сгорания из цилиндра при давлении несколько большем давления окружающей среды. Этот процесс на диаграмме изображается кривой 4-0 и называется линией выхлопа.
В данном случае рабочий процесс совершается за четыре хода поршня (такта). Коленчатый вал делает за это время два оборота. В связи с чем, рассмотренные двигатели называются четырехтактными.
Из анализа работы реального двигателя видно, что рабочий процесс не является замкнутым и в нем присутствуют все признаки необратимых процессов: трение, теплообмен при конечной разности температур, конечные скорости поршня и проч.
Так как в термодинамике исследуются лишь идеальные обратимые циклы, то для исследования цикла ДВС примем следующие допущения: рабочее тело -идеальный газ с постоянной теплоемкостью; количество рабочего тела постоянно; между рабочим телом и источниками теплоты имеет место бесконечно малая разность температур; подвод теплоты к рабочему телу производится не за счет сжигания топлива, а от внешних источников теплоты. То же самое справедливо и для отвода теплоты.
Принятые допущения приводят к изучению идеальных термодинамических циклов ДВС, что позволяет производить сравнение различных двигателей и определять факторы, влияющие на их кпд. Диаграмма, построенная с учетом указанных выше допущений, будет уже не индикаторной диаграммой двигателя, а pv - диаграммой его цикла.
Рассмотрим идеальный термодинамический цикл ДВС с изохорным подводом теплоты. Цикл в pv координатах представлен на рис. 2.
Идеальный газ с начальными параметрами p1, v1,T1 сжимается по адиабате 1-2. В изохорном процессе 2-3 рабочему телу от внешнего источника теплоты передается количество теплоты q1. В адиабатном процессе 3-4 рабочее тело расширяется до первоначального объема v4=v1. В изохорном процессе 4-1 рабочее тело возвращается в исходное состояние с отводом от него теплоты q2 в теплоприемник.
Характеристиками цикла являются:
- Степень сжатия;
-Степень повышения давления;
Рис. 2
Количество подведенной и отведенной теплоты определяются по формулам:
Подставляя эти значения теплот в формулу для термического кпд, получим:
Найдем параметры рабочего тела во всех характерных точках цикла.
Точка 2.
откуда получаем
Точка 3.
откуда получаем
Точка 4.
откуда получаем
С учетом найденных значений температур формула для кпд примет вид
Формула 1.
И з последнего соотношения следует, что термический кпд увеличивается с возрастанием степени сжатия e и показателя адиабаты k.
Однако повышение степени сжатия в двигателях данного типа ограничивается возможностью преждевременного самовоспламенения горючей смеси. В связи с чем, рассматриваемые типы двигателей имеют относительно низкие кпд. В зависимости от рода топлива степень сжатия в таких двигателях изменяется от 4 до 9.
Работа цикла определяется по формуле:
Циклы с подводом теплоты при постоянном объеме применяются в карбюраторных типах двигателей с использованием принудительного воспламенения от электрической искры.
4. Циклы ДВС с подводом теплоты
при постоянном давлении
Двигатели, в основу работы которых положен цикл с подводом теплоты при постоянном давлении (с постепенным сгоранием), имеют ряд преимуществ по сравнению с двигателями, работающими по циклу с подводом теплоты при постоянном объеме. Они связаны с тем, что в двигателях с постепенным сгоранием осуществляется раздельное сжатие топлива и воздуха. Поэтому здесь можно достигать значительно более высоких степеней сжатия. Воздух при высоких давлениях имеет настолько высокую температуру, что подаваемое в цилиндр топливо самовоспламеняется без всяких специальных запальных приспособлений. Кроме того, раздельное сжатие воздуха и топлива позволяет использовать любое жидкое дешевое топливо - нефть, мазут, смолы и проч.
В двигателях с постепенным сгоранием топлива воздух сжимается в цилиндре, а жидкое топливо распыляется сжатым воздухом от компрессора. Раздельное сжатие позволяет применять высокие степени сжатия (до e =20 ), исключая преждевременное самовоспламенение топлива. Постоянство давления при горении топлива обеспечивается соответствующей регулировкой топливной форсунки. Конструкция такого двигателя впервые была разработана немецким инженером Дизелем.
Рассмотрим идеальный цикл двигателя с подводом теплоты при постоянном давлении в pv- диаграмме рис.3
Рис.3
Этот цикл осуществляется следующим образом. Газообразное рабочее тело с начальными параметрами p1, v1, T1 сжимается по адиабате 1-2. В изобарном процессе 2-3 телу сообщается некоторое количество теплоты q1. В адиабатном процессе 3-4 происходит расширение рабочего тела до первоначального объема. В изохорном процессе 4-1 рабочее тело возвращается в первоначальное состояние с отводом в теплоприемник теплоты q2. Характеристиками цикла являются :
Степень сжатия -
Степень предварительного расширения -
Количество подведенной и отведенной теплот определяются по формулам:
Термический кпд цикла в предположении постоянства теплоемкостей cp и cv и их отношения k=cp /cv будет:
Параметры рабочего тела в характерных точках цикла будут:
Точка 2.
откуда получаем:
Точка 3.
откуда получаем:
Точка 4.
Так как
то
Подставляя полученные значения температур в формулу для кпд, получим
Формула 2
Отсюда следует, что с увеличением e и k кпд увеличивается, а с увеличением r - уменьшается.
Работа цикла определяется по формуле:
Сравнения кпд циклов ДВС с подводом теплоты при p = const и v = const при одинаковых давлениях и температурах, но при различных e показывают, что
При этом степень сжатия e в цикле с подводом теплоты при p = const больше, чем в цикле с подводом теплоты при v = const .
Величина e в цикле с подводом теплоты при постоянном давлении выбирается таким образом, чтобы обеспечивались условия самовоспламенения топлива. Таким условиям в компрессорных дизелях соответствует e = 14 -18.
5. Цикл ДВС со смешанным подводом теплоты
Одним из недостатков двигателей, в которых применяется цикл с подводом теплоты при постоянном давлении, является необходимость использования компрессора, применяемого для подачи топлива. Наличие компрессора усложняет конструкцию и уменьшает экономичность двигателя, т.к. на его работу затрачивается 6-10 % от общей мощности двигателя.
С целью упрощения конструкции и увеличения экономичности двигателя русский инженер Г.В.Тринклер разработал проект бескомпрессорного двигателя высокого сжатия. Этот двигатель лишен недостатков рассмотренных выше двух типов двигателей. Основное его отличие в том, что жидкое топливо с помощью топливного насоса подается через форсунку в головку цилиндра, где оно воспламеняется и горит вначале при постоянном объеме, а потом при постоянном давлении. На рис. 4 представлен идеальный цикл двигателя со смешанным подводом теплоты в pv - координатах.
Рис 4.
В адиабатном процессе 1-2 рабочее тело сжимается до параметров в точке 2. В изохорном процессе 2-3 к нему подводится первая доля теплоты q1 штрих , а в изобарном процессе 3-4 - вторая - q1 два штриха. В процессе 4-5 происходит адиабатное расширение рабочего тела и по изохоре 5-1 оно возвращается в исходное состояние с отводом теплоты q2 в теплоприемник.
Характеристиками цикла являются :
Степень сжатия -
Степень повышения давления -
Степень предварительного расширения -
Количества подведенной
и отведенной q2 теплот определяются по формулам:
Термический кпд цикла будет:
Найдем параметры рабочего тела в характерных точках цикла.
Точка 2.
откуда получаем
Точка 3.
Точка 4.
Точка 5.
Подставив найденные значения температур в формулу для кпд, будем иметь:
Формула 3
Отсюда следует, что с увеличением k, e и l кпд цикла возрастает, а с увеличением r уменьшается.
Цикл со смешанным подводом теплоты обобщает циклы с изобарным и изохорным подводом теплоты. Если положить что лямбда = 1 (что означает отсутствие подвода теплоты при постоянном объеме ( P2 =P3 )), то формула (3) приводится к формуле (2), т.е. к формуле для кпд цикла ДВС с изобарным подводом теплоты. Если принять p=1(что означает отсутствие подвода теплоты при постоянном давлении ( V3 = V4 )), то формула (3) приводится к формуле (1) для кпд цикла с изохорным подводом теплоты.
Цикл со смешанным подводом теплоты лежит в основе работы большинства современных дизелей.
PS
1. В тексте обнаружены не точности в описание формул связанные с изменением символов при переносе в HTML - будьте осторожны . В ближайшее время текст будет проверен и исправлен.
2. Информация взята с моих личных лекций по Термодинамике (вроде бы О_о)
Ключевые слова: Циклы поршневых двигателей внутреннего сгорания, рабочие циклы двс, циклы поршневых двс, термодинамические циклы двс, теоретические циклы двс, классификация ДВС, циклы ДВС с подводом теплоты при постоянном объеме, циклы ДВС с подводом теплоты при постоянном давлении, циклы ДВС со смешанным подводом теплоты, теория работы ДВС.
Последний раз редактировалось 12.08.2011г
Стена содержит гораздо больше вопросов/ответов, чем показанно здесь!
Чтобы посмотреть все нажмите кнопочку "Загрузить ещё"